If you’ve ever lied about your IQ to seem more intelligent, it’s time to fess up. Scientists can now tell how smart you are just by looking at a scan of your brain, report agencies.
Actually, to be more precise, the scientists themselves aren’t looking at your brain scan; a machine-learning algorithm they’ve developed is.
In a new study, researchers from Caltech, Cedars-Sinai Medical Center, and the University of Salerno show that their new computing tool can predict a person’s intelligence from functional magnetic resonance imaging (fMRI) scans of their resting state brain activity. Functional MRI develops a map of brain activity by detecting changes in blood flow to specific brain regions. In other words, an individual’s intelligence can be gleaned from patterns of activity in their brain when they’re not doing or thinking anything in particular—no math problems, no vocabulary quizzes, no puzzles.
“We found if we just have people lie in the scanner and do nothing while we measure the pattern of activity in their brain, we can use the data to predict their intelligence,” says Ralph Adolphs (Ph.D. ’92), Bren Professor of Psychology, Neuroscience, and Biology, and director and Allen V. C. Davis and Lenabelle Davis Leadership Chair of the Caltech Brain Imaging Center.
To train their algorithm on the complex patterns of activity in the human brain, Adolphs and his team used data collected by the Human Connectome Project (HCP), a scientific endeavor funded by the National Institutes of Health (NIH) that seeks to improve understanding of the many connections in the human brain. Adolphs and his colleagues downloaded the brain scans and intelligence scores from almost 900 individuals who had participated in the HCP, fed these into their algorithm, and set it to work. After processing the data, the team’s algorithm was able to predict intelligence at statistically significant levels across these 900 subjects, says Julien Dubois (Ph.D. ’13), a postdoctoral fellow at Cedars-Sinai Medical Center. But there is a lot of room for improvement, he adds.
The scans are coarse and noisy measures of what is actually happening in the brain, and a lot of potentially useful information is still being discarded.